
Strata: Fine-Grained Device-Free Tracking Using Acoustic Signals

ABSTRACT
Next generation devices, such as virtual reality (VR), aug-
mented reality (AR), and smart appliances, demand a simple
and intuitive way for users to interact with them. To ad-
dress such needs, we develop a novel acoustic based device-
free tracking system, called Strata, to enable a user to inter-
act with a nearby device by simply moving his finger. In
Strata, a mobile (e.g., smartphone) transmits known audio
signals at an inaudible frequency, and analyzes the received
signal reflected by the moving finger to track the finger loca-
tion. To explicitly take into account multipath propagation,
the mobile estimates the channel impulse response (CIR),
which characterizes signal traversal paths with different de-
lays. Each channel tap corresponds to the multipath effects
within a certain delay range. The mobile selects the channel
tap corresponding to the finger movement and extracts the
phase change of the selected tap to accurately estimate the
distance change of a finger. Moreover, it estimates the abso-
lute distance of the finger based on the change in CIR using
a novel optimization framework. We then combine the ab-
solute and relative distance estimates to accurately track the
moving target. We implement our tracking system on Sam-
sung S4. Through micro-benchmarks and user studies, we
show that our system achieves high tracking accuracy and
low latency without extra hardware.

1. INTRODUCTION
Motivation: Smart appliances, Virtual Reality (VR), and
Augmented Reality (AR) are all taking off. The availabil-
ity of easy-to-use user interface is the key to their success.
Smart TVs are still cumbersome to navigate through the menus.
Many smart appliances require users to manually launch smart-
phone applications and click through, which is even more
cumbersome than actually turning on/off switches. VR and
AR are expected to hit $150 billion by 2020. They provide
immersive experience, and open the doors to new ways of
training, education, meeting, advertising, travel, health care,
emergency responses, and scientific experiments. However,
the current user interfaces of VR/AR are rather limited: they
rely on tapping, swiping, voice recognition, or steering the
camera towards the hand to make sure the hand is within
the view and line-of-sight of the camera while wearing the
headset. Our vision is to develop a device-free user interface
(UI) so that a user can freely move his or her hand to control
game consoles, VR, AR, and smart appliances.

Directly tracking hand or finger movement without any
device is appealing due to convenience. We have interviewed
VR, AR, game developers and users. They all prefer device-
free based user interface (UI) (i.e., controlling devices di-
rectly using hands without holding anything) since it is cum-
bersome to control a device outside the view in VR/AR and

it is more natural to play games and interact with VR/AR
objects using hands directly.

Challenges: Enabling accurate device-free tracking is par-
ticularly challenging. In such a case, reflected signal has to
be used for tracking. Reflected signal is much weaker than
the directly received signal (e.g., in free space, the directly
received signal attenuates by 1/d2 whereas the reflected sig-
nal attenuates by 1/d4, where d is the distance between the
device and the target to be tracked). Moreover, it is more dif-
ficult to handle multiple reflection paths in device-free track-
ing. In device-based tracking, one may rely on finding the
first arriving signal since the straight-line path between the
sender and receiver is shortest. In comparison, in device-free
tracking, the path(s) of interest is the shortest, which makes
it even harder to distinguish which path should be used for
tracking.

Recently, there have been considerable work on device-
free motion tracking using various signals, such as wire-
less signals (e.g., [12, 3, 40, 31]), acoustic signals (e.g.,
[21, 29]), and vision [1, 2, 36, 33]). However, they either
require specialized hardware or provide insufficient accu-
racy. For example, WiDeo [12] that is a recent research on
WiFi-based tracking pushes the tracking accuracy to up to
a few centimeters, but it requires full-duplex wireless hard-
ware. WiTrack [3] tracks user position with 10-13 cm er-
ror, but it uses customized hardware that transmits chirp sig-
nal through 1.67 GHz bandwidth. WiDraw [31] achieves
5 cm tracking accuracy with the support of 25 WiFi APs
around the user. Therefore, they require complicated hard-
ware while providing insufficient accuracy to enable motion-
based UI for VR/AR users. 60GHz-based tracking (e.g.,
[40]) achieves higher accuracy but requires 60 GHz antenna
arrays, which are not widely available.

Recently, two state-of-the-art acoustic tracking schemes
(i.e., FingerIO [21] and LLAP [29]) enable device-free track-
ing only using the existing speaker and microphones in mo-
bile device. Although they achieve higher accuracy than the
other schemes, due to their vulnerability on the multi-path
reflections and surrounding movements, their tracking accu-
racy is still limited. For example, based on our extensive
experiment, LLAP [29] achieves 0.7 cm distance estimation
error in 1D tracking, but its trajectory error in 2D space in-
creases to 2.1 cm. When there are moving people around the
tracking object, the accuracy gets worse. The accuracy of
FingerIO is even lower than LLAP.

Therefore, despite significant progress, achieving highly
accurate and responsive device-free tracking on commodity
hardware remains an open challenge. According to personal
communication with game and application developers, sub-
centimeter level accuracy and within 16 ms response time
are required in order to provide good user experience. This is
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especially challenging to achieve using a commodity device,
such as a smartphone, given its limited processing power and
lack of special hardware.

Our approach: Built on the existing work, we develop a
new device-free tracking using acoustic signals. In our sys-
tem, a mobile (e.g., smartphone) continuously transmits in-
audible acoustic signals. The signals are reflected by nearby
objects, including a moving finger, and arrive at the micro-
phone on the same mobile. The mobile analyzes the received
signal to estimate the channel, based on which it estimates
the distance change and absolute distance to locate the fin-
ger.

Due to the small wave-length of acoustic signals, it is
promising to derive the distance change based on the phase.
Phase is also more robust to imperfect frequency response
of a speaker. However, like many wireless signals, audio
signals go through multiple paths to reach the receiver (e.g.,
due to reflection by different objects). Such multipath prop-
agation poses significant challenges to using the phase of
the raw received signal for tracking. To address the chal-
lenge, we estimate channel impulse response (CIR) in the
time-domain. The estimate gives the channel coefficient of
each channel tap. We then select an appropriate channel tap
and use the phase of the selected tap to estimate the distance
change of a finger.

To further derive the absolute distance, we develop a novel
framework to estimate the absolute distance of the path re-
flected by the moving finger during a few consecutive inter-
vals such that its changes match with the changes in the CIR
during these intervals and the distance changes between the
intervals match with the phase measurement. Inferring the
absolute distance serves two purposes: (i) it allows us to get
the initial absolute distance so that we can translate the sub-
sequent distance change into a new absolute distance, and
(ii) it can be used to improve the tracking accuracy and alle-
viate error accumulation in subsequent intervals by combin-
ing it with the relative distance change.

We implement our approach on Samsung S4, which has
one speaker and two microphones, and enable real-time track-
ing of the user’s moving finger. With the extensive user-
study, we show our system has three distinct features: (i)
high accuracy: within 0.3 cm distance tracking error, 1.0 cm
2D tracking error, and 0.6 cm drawing error in a 2D space;
(ii) low latency: we can update the position every 12.5ms,
and (iii) easy to deploy: a smartphone can track a nearby
finger movement without extra hardware.

2. OUR APPROACH
In this section, we present a fine-grained acoustic-based

device-free tracking.

2.1 Overview
We use the phase change of the acoustic channel to es-

timate the distance change. This allows us to achieve high
accuracy because the acoustic wavelength is very short. For

example, the wavelength is 1.9 cm in 18 KHz audio fre-
quency. Only 1 mm movement causes the reflected path
length to change by 2 mm, which results in 0.21π phase
change, large enough to detect.

However, in practice, due to multi-path propagation (i.e.,
a signal traverses multiple paths before arriving at the re-
ceiver), the impact of a moving target on the overall channel
can be very complicated, and varies across environments. In
order to address this challenge, we use the phase from the
estimated channel impulse response (CIR) rather than the
raw received signal. CIR is a characterization of all signal
traversal paths with different delays and magnitudes [27].
Specifically, it is a vector of channel taps where each channel
tap corresponds to multi-path effects within a specific delay
range. By focusing on the phase change of certain channel
taps whose delays are close to the target delay range, we can
effectively filter out the phase change incurred by the move-
ment of objects outside a certain range as determined by the
number of taps being used.

The phase change only gives us the distance change. We
need to know the absolute distance at some point in order
to translate the distance change into an absolute distance for
tracking. Moreover, using the distance change alone incurs
error accumulation, since the distance at a given time is es-
timated as the sum of all previous distance changes plus the
initial position, each of which may incur an error. To address
both issues, we develop a technique to estimate the absolute
distance, which is used to get the initial position and also
enhance the tracking accuracy by combining it with the dis-
tance change over time.

Putting together, our overall system consists of the follow-
ing steps, which we will elaborate in this section.

1. Estimate channel impulse response (CIR) (Section 2.3);

2. Identify the channel tap corresponding to the target, and
track the phase change of the selected tap in CIR to esti-
mate the distance change (Section 2.4);

3. Estimate the absolute distance based on CIR (Section 2.5);

4. Combine the absolute distance with the relative distance
to get a more accurate distance estimate, and track the
target’s position based on the distance to different land-
marks (e.g., microphones) (Section 2.6).

Our system implementation uses 18-22 KHz frequency and
48 KHz sampling rate. We can easily support other band-
widths and sampling rates.

2.2 Background
A wireless signal, including an audio signal, travels through

a straight line from the transmitter to the receiver in free
space. In reality, due to obstacles in the environment, a
single transmitted signal will reach the receiver via multiple
paths (e.g., paths going through different reflectors). There-
fore, the received signal is a superposition of multiple signals
with different delays. The received signal via multipath is
traditionally modeled as the following Linear Time-Invariant
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(LTI) system [34]. Suppose the channel has L paths and the
received signal from path i has delay τi and amplitude ai
determined by the travel distance of the path and reflectors.
Then, the received signal y(t) is the summation of L signals,
as shown below:

y(t) =

L∑
i=1

aix(t− τi) =

L∑
i=1

aie
−j2πfcτis(t− τi)

= h(t) ∗ x(t),

where s(t) and x(t) are the transmitted baseband and the
passband signals at time t, respectively, and h(t) is the chan-
nel impulse response. h(t) =

∑L
i=1 aie

−j2πfcτiδ(t− τi),
where δ(t) is Dirac’s delta function [9].

The channel estimate from the received baseband symbols
is a discrete output of h(t) sampled every Ts [34], which is

h[n] =
L∑

i=1

aie
−j2πfcτi sinc(n− τiW ), (1)

where sinc(t) = sin(πt)
πt . Conventionally, h[n] is called the

n-th channel tap, because CIR is regarded as a discrete-time
filter in LTI system. Note that sinc function decays over
time, so the impact of delayed signal on the measured h[n]
is small when the difference between nTs and τi are suffi-
ciently large. However, if they are relatively close, move-
ment is captured in multiple channel taps due to the signal
dispersion effect of sinc function. This is illustrated in Fig-
ure 1, where there is only one small object within 50 cm
away from the mobile and the object is 30cm away closest
to tap 3 (h[3]), but the nearby channel taps also see non-
negligible magnitude.
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Figure 1: Impact of sinc() on channel estimate.
2.3 Estimating Channel Impulse Response
Single-carrier communication channel: To estimate the
channel, we design data communication for acoustic chan-
nel. An important design decision is whether we should use
single-carrier or multi-carrier (e.g., OFDM) communication.
OFDM is widely used in modern wireless communication
due to its efficiency and robustness to Inter Symbol Interfer-
ence (ISI) caused by multipath. However, it yields channel
estimation in frequency domain, while channel estimate is
often more useful in time domain for tracking and localiza-
tion purpose [19]. So we need to transform channel coeffi-
cients from frequency domain to time domain [28], but this
process requires additional computation and may incur sig-
nificant noise [41]. Therefore, we use a single-carrier based

communication system to estimate the channel in time do-
main without extra processing.

Transmission signal design: A transmitter sends a known
training sequence for channel estimation. Let S = {s[1], ..., s[K]}
denote the training sequence, where K is the length of the se-
quence. It can be any random bits. We choose 26-bit GSM
training sequence because it is known to have good prop-
erties for synchronization and channel estimation [25] and
widely used in single carrier communication. We modulate
S to BPSK symbols, where bits 0 and 1 are mapped to base-
band symbols 1 and -1, respectively.
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Figure 2: Transmitter and Receiver system diagram.

Figure 2(a) illustrates signal generation and transmission
process. To transmit a modulated symbol over the inaudible
frequency band, we first need to reduce the signal bandwidth
so that it does not exceed the maximum allowed bandwidth
of the inaudible band. Let fs and B denote the sampling
rate and the channel bandwidth, respectively. To limit the
bandwidth of the transmitted symbol, we upsample the sym-
bol with a rate of fs

B , which is done by zero padding and
low-pass filtering to smooth discontinuity [22]. Finally, we
up-convert the signal to transmit it over the inaudible band.
Let fc be the center frequency of the passband. We change
the frequency of the signal by multiplying

√
2 cos (2πfct)

to the baseband signal: x(t) =
√
2 cos (2πfct)s(t), where

s(t) and x(t) are upsampled baseband and passband sig-
nals, respectively. Since BPSK only has real parts, x(t) =√
2e−j2πfcts(t).
To remove noise outside the transmission band, we per-

form band-pass filtering on x(t) with pass-band range from
fc− B

2 Hz to fc+
B
2 Hz. The generated passband signals are

transmitted through the smartphone speaker. Since the trans-
mitted training sequence is always fixed, it can be generated
offline and saved as a format of 16-bit Pulse Coded Modula-
tion (PCM) in a Waveform Audio (WAV) file, which can be
played by any mobile (e.g., smartphone or smart watch).
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We refer to the training sequence as a frame. Between
frames, we insert a fixed gap (i.e., zero symbols) to avoid
inter-frame interference. The gap should be sufficiently long
so that the delayed signal from the previous frame does not
interfere with the new frame. However, it should be as short
as possible to provide low latency. Our study shows 24 zero
symbols between frames are sufficient. As a result, a frame
has 50 symbols. Given that the baseband symbol interval
is 1

B = 0.25 ms, each frame lasts 12.5 ms. So we update
new channel estimate and the target’s position every 12.5ms,
which is below 16 ms required for providing seamless user
experience.

Receiver design: Figure 2(b) illustrates the signal reception
and baseband conversion process. The received passband
signal y(t) arriving at the microphone is converted into a
baseband symbol r[n] using the following down-conversion
process: y(t) is multiplied by

√
2 cos (2πfct) and

−
√
2 sin (2πfct) to get the real and imaginary parts of the

received baseband symbol, respectively. We perform low-
path filtering and down-sampling to select a signal every
symbol interval. This gives us the following baseband sig-
nal 1: r[n] =

√
2 cos (2πfct)y(t) − j

√
2 sin (2πfct)y(t) =√

2e−j2πfcty(t), where t is the time that the n-th baseband
symbol is sampled (i.e., t = n × Ts, where Ts is a symbol
interval).

Frame detection: After passband-to-baseband signal con-
version, the receiver detects the first symbol of the received
frame by energy detection and cross-correlation. We first
detect the rough beginning of the frame based on energy de-
tection: if the magnitude of the 3 consecutive symbols are
higher than the threshold σ, we treat the first symbol as the
beginning of the frame symbols. Our implementation uses
σ = 0.003. Then we find more precise starting point based
on cross-correlation. Specifically, we find the sample that
gives the maximum cross-correlation magnitude between the
received and transmitted frames. Note the frame detection
procedure is only necessary at the beginning of tracking.
Since the frame interval is fixed, once a frame is detected,
the subsequent frames can be determined by adding a con-
stant frame interval.

Channel estimation: Next we estimate the channel based
on the received frame and the known training sequence. There
are several existing channel estimation algorithms in single
carrier communication system. We use least-Squares (LS)
channel estimation since it is cheap to compute on a mobile.
We mainly focus on the algorithm implementation, and refer
readers to [25] for the fundamental theory behind it.

For LS channel estimation, one needs to decide the ref-
erence length P and the memory length L, where L deter-
mines the number of channel taps we can estimate and P+L

1Conventionally, (·) and [·] notations are used to represent analog
and digital signals, respectively. Here every signal is digital be-
cause a mobile app cannot access the analog signal. We use (·) and
[·] notations to distinguish upsampled signal with rate fs from the
downsampled signal with rate B.

is the training sequence length. Increasing L allows us to
estimate more channel taps but reduces the reliability of es-
timation. Our implementation uses P = 16 and L = 10,
which implies we can track movement up to 50 cm away
(see Section 2.4.1). One can easily adapt P according to the
environment.

Let m = {m1,m2, . . . ,mL+P } denote the training se-
quence. A circulant training matrix M ∈ RP×L is:

M =


mL mL−1 mL−2 . . . m1

mL+1 mL mL−1 . . . m2

...
...

...
. . .

...
mL+P mL+P−1 mL+P−2 . . . mP+1

 .

Let y = {y1, y2, . . . , yL+P } denote the received training
sequence. The channel is estimated as

ĥ = (MHM)−1MHyL, (2)

where yL = {yL+1, yL+2, . . . , yL+P }.
Given the pre-computed (MHM)−1MH , the computa-

tional cost of the channel estimation is only the matrix-to-
vector multiplication, which is O(P×L). Given P = 16 and
L = 10, the channel estimation complexity is low enough to
implement on a mobile.

Improving channel estimation accuracy: We further im-
prove the channel estimation accuracy. In traditional digital
communication, downsampling during the passband to base-
band conversion simply picks one out of every r samples
from the over-sampled signals, where r is the upsampling
rate. In Strata, r is 12. So 11 samples out of 12 samples
are thrown away in the downsampling process, which can
be wasteful. Such wastage arises in our setting because the
audio sampling rate is 48 KHz, which is much higher than
the Nyquist rate 8KHz. Instead of simply dropping over-
sampled signals, we average them to reduce noise in the out-
put. From every r samples in a sampling interval, we pick
the first l samples and use their average as the downsampled
output. Our evaluation uses l = 4. We also evaluate the
impact of l in Section 3.

2.4 Tracking Phase Change

2.4.1 Overview
Next we track the phase change based on CIR estimates.

We study the impact of the reflected signal using the fol-
lowing experiment. We move a small aluminium ball (< 1
cm diameter) attached to a long and thin wood stick. The
person moving the stick is over 1 m away from the ball (out-
side the range of CIR taps). The ball is initially 30 cm away
from the smartphone and moved 20 cm towards the phone.
Figure 3 shows the phase of multiple channel taps while the
ball is moving towards the smartphone. The result shows
that the phase rotates in multiple taps, which indicates the
path length is changing. This change is caused by the mov-
ing ball. As shown in Figure 3, even though only a single
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small object moves, the phase rotation is observed in multi-
ple taps. We repeat the experiments multiple times, and find
that the phase rotation is observed approximately in 3 con-
secutive taps and the reflected signal with delay τ affects the
three h[n] that have the smallest |τ − nTs|. As a result, h[n]
can be approximated as:

h[n] ≈
∑
k

ake
−j2πfcτk , (n− 3

2
)Ts < τk < (n+

3

2
)Ts.

(3)
In other words, each channel tap h[n] contains the phase and
magnitude of the reflected signals whose delays are between
(n − 3

2 )Ts and (n + 3
2 )Ts. The path length changes with

the delay τk according to dk = τkVc, where dk is the travel
distance of the path k and Vc is the propagation speed of
the audio (i.e., Vc ≈ 340m/s). Assuming that the speaker
and microphone are closely located, the distance from the
microphone to the reflecting object is approximately half of
the travel distance. Therefore, h[n] indicates the object’s
distance from microphone is between (n− 3

2 )
TsVc

2 and (n+
3
2 )

TsVc

2 . Given Ts = 0.25 ms, TsVc

2 = 4.25 cm and each tap
captures objects across 12.75 cm range. This enables us to
filter out the movement of objects outside the target range.
For example, if we want to track the movement of a finger
within 50 cm from the mobile, we can limit the channel taps
to the first 10 taps to filter out the movement outside 50 cm.
This is because the 10th tap may contain information from
objects up to around 12th taps away, which gives 12∗4.25 =
51 cm.
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Figure 3: Phase change in multiple channel taps while
moving a ball.

Next we track the phase change using the CIR estimate.
While the CIR vector captures the channels with different
propagation distances, it is challenging to extract the phase

change caused by the target movement based on CIR since
multiple paths with similar distances are mixed within each
channel tap. To address the issue, we decompose the prob-
lem into the following two steps: (i) if we know which chan-
nel tap is affected by the moving target, how to extract the
phase change caused by the target’s movement, and (ii) how
to determine which channel tap is affected by the target. Be-
low we present our approaches to address both issues.

2.4.2 Estimate Phase Change
We assume the k-th channel tap is affected by the tar-

get’s movement. In order to observe the phase change of
the moving target, we compare the two consecutive channel
measurements. Taking difference between the two consecu-
tive channels effectively removes dominant static reflections.
Let Lk denote the number of paths observed in h[k]. Sup-
pose the Lk-th path is the path reflected from the moving
finger, while the other Lk − 1 paths remain the same during
the two consecutive channel measurement periods t− 1 and
t. Then,

h[k]t−1 =

Lk∑
i=1

aie
−j2πfcτi(t−1),

h[k]t =

Lk−1∑
i=1

aie
−j2πfcτi(t) + aLk

e−j2πfc(τLk
(t−1)+τd(t)),

where h[k]t is the k-th channel tap estimated from the t-th
frame and τd(t) is the delay difference caused by the target
movement between the t-th and (t − 1)-th frame intervals
(i.e., τd(t) = τLk

(t)−τLk
(t−1)). By taking their difference,

we get

hd[k]
t = aLk

(e−j2πfc(τLk
(t−1)+τd(t)) − e−j2πfcτLk

(t−1)),
(4)

where hd[k]
t = h[k]t − h[k]t−1. Equation 4 assumes that

aLk
associated with a propagation path is constant over two

consecutive measurements due to a very small distance change
in a 12.5 ms interval. From the angle of hd[k]

t, we observe
the phase rotation caused by the change of τLk

(t).

∠(hd[k]
t) = ∠(e−j2πfc(τLk

(t−1)+τd(t)) − e−j2πfcτLk
(t−1))

= ∠(e−j2πfcτLk
(t−1)(e−j2πfcτd(t) − 1))

= ∠(e−j2πfcτLk
(t−1)) +

∠(e−j2πfcτd(t))

2
+

π

2
,

(5)

where ∠(X) is the phase of the complex number X . We can
prove ∠(e−j2πa − 1) = ∠(e−j2πa)

2 + π
2 geometrically. The

proof is omitted in the interest of brevity.
Figure 4 (a) and (b) show the phases of h[k] and hd[k],

respectively, while a user is moving his finger towards the
speaker and microphone. In the collected trace, we conjec-
ture h[k] includes the finger movement related path between
1.0 second and 4.6 second. In Figure 4(a), the phase is very
stable and the change by the finger movement is not clear be-
cause the majority portion of h[k] contains signals from the
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(b) Phase of hd[k]

Figure 4: Phase of the channel impulse responses while a
finger is moving.

static paths. After removing the impact of the static paths,
we can observe clear phase rotation due to the finger move-
ment from hd[k].

From the phase difference between hd[k]
t+1 and hd[k]

t,
we get the phase rotation caused by the delay difference
∠(e−j2πfcτd(t)), and eventually the travel distance of the
finger during the measurement interval using the relation be-
tween the phase change. Note that τd(t) = τLk

(t)−τLk
(t−

1). Using Equation 5, we represent the phase difference as

∠(hd[k]
t+1)− ∠(hd[k]

t) = ∠(e−j2πfcτLk
(t))

−∠(e−j2πfcτLk
(t−1))+

1

2
(∠(e−j2πfcτd(t+1))−∠(e−j2πfcτd(t)))

= ∠(e−j2πfcτd(t))+
1

2
(∠(e−j2πfcτd(t+1))−∠(e−j2πfcτd(t))).

By solving the above equation, we can calculate ∠(e−j2πfcτd(t)).
Without prior, we can simply assume τd(t + 1) = τd(t).
Once we get the phase rotation, we can calculate the dis-
tance change based on dt = λ × ∠(e−j2πfcτd(t)), where dt

is the distance change of the dynamic path at time t, and λ is
the wavelength of the audio signal. This relationship holds
as long as the phase change is smaller than 2π, which holds
for our finger movement speed and interval duration.

2.4.3 Finding Channel Tap Corresponding to the Tar-
get

Section 2.4 assumes we already know which tap to use for
tracking the finger movement. This section describes how to
find the right tap that includes the path reflected from the fin-
ger among multiple possible taps. Note that as mentioned in
Section 2.4.1, the phase rotation by the finger movement is
observed in multiple taps rather than in a single tap. There-
fore, we just need to select one of these taps.

The channel taps can be classified as dynamic taps (i.e.,
those that includes dynamic paths) and static taps (i.e., those
that do not). The right taps should be dynamic taps, since
we are interested in tracking finger movement. If all taps are
static taps, it means the finger does not move and its position
does not need to be updated.
Criterion 1: Compared to the static taps, the dynamic taps

have relatively larger variation of the channel over time. There-
fore, we develop the following test to identify dynamic paths
in the tap k: M1[k]

t = |h[k]t−h[k]t−1|
|h[k]t| > σl, which compares

the normalized difference in the magnitude of two consecu-
tive channels with a threshold σl. We use σ1 = 0.05.

Criterion 2: While the above condition distinguishes be-
tween the dynamic and static taps, the noise in the channel
estimation might cause the classification error. Therefore,
we add another criterion based on the following observa-
tion: the phase rotation of static tap k, denoted as hd[k],
is very unstable because all static paths are removed during
the differentiation process and the remaining value in hd[k]
may contain random noise. In comparison, if k is a dynamic
tap, the phase rotation of hd[k] is much more stable because
hd[k] includes the dynamic path and its phase change over
the measurement interval is relatively small. This is evident
from Figure 3 and 4, which show the phase changes when
the dynamic path is not included in the channel tap.

Based on this observation, we develop the following cri-
terion to select the final tap. We measure the stability of the
phase change, which is defined as the phase change differ-
ence over the last three measurements. Specifically, we find
the maximum phase change over the three periods, denoted
as M2[k]

t = maxi=t−2,t−1,t f(i), and f(i) = |∠(e−j2πfcτ
k
d (t))−

∠(e−j2πfcτ
k
d (t−1))|. We select the tap with the smallest max-

imum phase change (i.e., the smoothest tap) from all taps
that satisfy the criterion 1 as the final tap.

2.5 Estimating Absolute Distance
So far, we have focused on tracking the distance change

of the finger by observing the phase. We need an absolute
distance at some point in order to get the absolute distance
over time. Therefore, we develop a method to estimate the
absolute distance based on the channel coefficients.

How to accurately estimate the absolute distance based on
the channel estimate is an open problem. [12, 35] cast this
problem as non-linear optimization problems, which search
for the parameters associated with each channel tap such that
the sum across all taps matches the overall channel measure-
ment. This is effective when the channel is sparse. [12,
35] show this approach achieves dm-level accuracy in WiFi.
We have tried this approach in our context, and found the
accuracy is poor when using acoustic signals due to many
multipaths, which results in many unknowns and a severely
under-constrained system.

Basic framework: We develop a new formulation to ad-
dress the under-constrained problem. It is motivated by the
following important observation. We do not need to recon-
struct complete channel profile in order to track a moving
finger. Instead, we just need to reconstruct the delay and
magnitude of the path that is reflected by the finger. Since
a finger is small, it is reasonable to assume only one path
is reflected by the finger. Therefore, we can take the differ-
ence between the two consecutive CIR estimates, which will
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cancel out all static paths and reduce the unknowns to the
number of the parameters associated with the path that is re-
flected by the finger. Recall Equation 1 models the impact of
reflection on the estimated channels. We take the difference
between the two consecutive CIR, which removes all static
paths and only keeps the path reflected by the moving finger:

hd[n] = a(e−j2πfc(τ+τd) sinc(n− (τ + τd)W )

− e−j2πfcτ sinc(n− τW )), (6)

where a and τ are the amplitude and delay of the signal re-
flected from the finger, respectively 2. Based on the mea-
sured hd[n], our goal is to find τ and a that minimize the
difference between the measured and estimated CIR change,
where the estimated CIR is derived from the mathematical
model using Equation 6.

To further improve the accuracy, we minimize the differ-
ence between the measured and estimated CIR change over
multiple consecutive CIR measurements. Our implementa-
tion considers the past 3 CIR measurements (i.e., the CIR
change from t − 2 to t − 1 and from t − 1 to t). We still
compute the coordinate every interval except that we use the
most recent 3 CIR measurements to construct the optimiza-
tion problem. Therefore, we can improve the accuracy while
maintaining 12.5 ms tracking interval.

Putting together, we solve the following optimization prob-
lem:

min
τ,τest

d (i),a
:
∑
i

L∑
n=1

[
ht,t+i
d [n]−

a(e−j2πfc(τ+τest
d (i)) sinc(n− (τ + τestd (i))W )

−e−j2πfcτ sinc(n− τW ))
]2

+ α
∑
i

|τestd (i)− τd(i)|

(7)

where ht,t+i
d [n] denotes the measured CIR change in the n-th

tap from t-th measurement to t+ i-th measurement, τestd (i)
is the inferred delay change from the t-th measurement to the
t+ i-th measurement, and τd(i) is the delay change derived
from the phase measurement in Section 2.4. a, τ , and τestd (i)
are unknowns. The first term in the objective captures the
fitting error between the measured CIR change versus the
CIR change derived from the absolute distance based on a,
τ and τ estd (i), and the second term captures the fitting error
between the inferred delay change versus the delay change
measured from the phase. α captures the relative weight be-
tween the two terms, and set to 100 in our evaluation due to
more accurate distance change measurement.

Compared with the channel decomposition in [12, 35],
which tries to find τ ’s and a’s associated with all paths in
the channel, our scheme finds τ and a associated with the
path reflected by the moving finger. This has two benefits:
(i) it reduces the number of unknowns and improves the ac-
2Note that Equation 4 is based on Equation 3, which is an approx-
imation to Equation 1.

curacy while reducing computation cost, (ii) it removes all
static paths and helps reduce the error. Moreover, we lever-
age the information across multiple measurements to further
enhance the accuracy. Once we get τ , we can easily cal-
culate the absolute distance as the product of delay (τ ) and
sound propagation speed.

Enhancement: While the above approach is useful to find
the absolute distance, its accuracy is limited by the resolu-
tion of the estimated channel. Since the bandwidth of the
channel is limited to 4 KHz, the baseband symbol interval
is 0.25 ms, which is translated into the channel resolution of
4.25 cm. When we try to find τ using h[n] sampled every
4.25 cm, the error increases due to the coarse resolution.

To enhance the accuracy, we again exploit the over-sampled
signals to achieve finer resolution. For the over-sampled sig-
nals received between h[k] and h[k + 1], we estimate the
channel using the same method in Section 2.3. These sam-
ples are 0.0208 ms apart (i.e., 1

Fs
ms), which corresponds to

the distance resolution of 3.5 mm. As a result, the resolution
of the channel estimation is limited not by the baseband sym-
bol rate but by the sampling rate of the audio signal, which
is 12 times higher! Again such over-sampling is unique in
our setup due to a much higher audio sampling rate than the
Nyquist rate. With this fine-grained channel estimation, we
find τ using the same optimization framework.
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Figure 5: Measured, re-generated, and ground-truth
channel differences with coarse and fine grained chan-
nels based absolute distance estimation.

Figure 5 shows the impact of coarse-grained and fine-
grained channel estimation on the absolute distance estimate.
In this experiment, we record the audio signal while a user
is moving his finger, and estimate the absolute distance us-
ing the measured channels. For ease of interpretation, we
represent the x-axis of Figure 5 as the distance correspond-
ing to the delay of the channel. The red lines in the figure
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show measured channel difference. The green and blue lines
correspond to the channel differences by plugging in the esti-
mated and ground-truth delays into Equation 6, respectively.
The ground-truth finger distance is 32 cm. As we can see,
the channel difference under the coarse channel estimation
deviates from the ground-truth channel, and has 2 cm error.
In comparison, the channel difference from the fine grained
estimation is close to the ground-truth, and has only 0.4 cm
error.

2.6 Tracking the moving finger in 2D space
In Section 2.4 – Section 2.5, we present an approach to

estimate the distance to the target. This allows us to track
in 1D space, which is already useful for some applications.
Next we describe how to track a finger in 2D space by lever-
aging two microphones on a smartphone (e.g., Samsung S
series).
Combine relative and absolute distance: We use both ab-
solute distance and distance change estimated from the phase
to track the target. At the beginning, we use the absolute
distance to get the initial position of the target. Afterwards,
we can get two distance estimates: dpk estimated from the
phase and dck estimated from the channel difference, where
dpk = dk−1 + ∆dpk and ∆dpk is computed as a function of
the phase change. We then combine the two distance esti-
mates using a weighting factor β. β is set to 0.1 due to more
accurate phase change measurement.

dk = (1− β)dpk + βdck, (8)

Estimate coordinate: Given the phone form factor, we know
the relative locations of the speaker and the microphones.
Suppose the speaker is located at the origin (0, 0), and the
two microphones are located at (x1, 0) and (x2, 0), respec-
tively. We assume they are all aligned in the same Y-axis be-
cause modern smartphones are very thin. The finger should
be on the ellipse whose foci are (x1, 0) and (x2, 0) and the
total distance to the focu is dk. Using two microphones as
landmarks, we can track the finger by finding the intersec-
tion of the two ellipses. There are two intersections between
two ellipses when they overlap, and we select the one closer
to the previous position.

3. PERFORMANCE EVALUATION

3.1 Experiment setup
We implement an Android app that processes the audio

signal and tracks the movement of the finger in real-time. We
use Samsung Galaxy S4 mobile phone as a tracking device.
It has one rear speaker and two microphones at the top and
bottom of the phone with 14 cm separation. The mobile app
plays audio file generated as explained in Section 2.3, and
receives the audio signal from the microphones, and tracks
the finger position in real-time. For audio signal transmis-
sion, we use inaudible frequency band between 18 KHz and
22 KHz, and the tracking interval is 12.5 ms. To convert

Figure 6: Testbed setup for the performance evaluation.

passband to baseband, we implement an infinite-impulse re-
sponse (IIR) low-pass filter.

As shown in Figure 6, to collect the ground-truth of the
finger movement, we let the user move the finger on the top
of a smart tablet. It collects the touch event of the screen
and generates the ground-truth trajectory of the finger move-
ment, which is compared with the position estimated by our
approach. This setup is only needed for collecting the ground
truth to quantify the accuracy, and our scheme can let users
freely draw in the air. In user study, we show simple shapes,
such as a triangle, diamond, and circle on the tablet screen,
and ask the user to trace the shapes. The average distance
of the shapes is 22.3 cm. For data collection and user study,
we recruit 5 people where four of them are men and one
is woman. They are college students whose ages are be-
tween 21 to 29. This age-group is likely to be the most active
VR/AR users.

3.2 Baseline Schemes
We compare our scheme with the following two acoustic

signal based device-free tracking schemes:

Low Latency Acoustic Phase (LLAP): LLAP [29] tracks
the finger movement by observing the phase change of the
reflected signal. In this scheme, the transmitter continuously
sends sine waves and the receiver tracks the moving target
based on the phase change of the received waves. We imple-
mented LLAP closely following [29]. We generate the trans-
mission signal sin (2πfct) using MATLAB, stored as 16-bit
PCM-format WAV file, and transmitted through the speaker.
At the receiver side, the audio signal from the microphone is
first multiplied by

√
2 cos (2πfct) and −

√
2 sin (2πfct), and

goes through a low-pass filter to get the real and imaginary
parts of the received signal, respectively. The phase of the
moving finger is tracked by Local Extreme Value Detection
(LEVD) algorithm in [29] that filters out static signals and
tracks the phase change by the finger movement. It improves
the accuracy of the phase estimation by averaging multiple
received signals. Let Ts denote the sampling interval of the
phase. We take the phase after averaging all received sig-
nals during Ts. Ts is selected as 12.5 ms so that both Strata
and LLAP have the same tracking delay. Also, we used the
multiple frequencies to address the multi-path fading as pro-
posed in [29]. We did not implement its absolute distance
estimation algorithm in LLAP for initialization, but used the
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ground-truth for the initial position estimation. Our evalua-
tion results of its 1D distance estimation error is similar to
what is presented in [29]. Interestingly, [29] did not evaluate
the 2D trajectory error.

The main difference between Strata and LLAP is that the
former separately measures the phase change of the signals
with different delays while the latter measures the phase change
caused by all of the surrounding objects. Since multiple
body parts may move together while the user moves the
finger, using the combined phase change yields inaccurate
finger tracking. The problem is even worse when there are
other moving objects and people nearby, which can be com-
mon in practice.

Cross-correlation based tracking: This scheme tracks a
moving object by measuring the change in the cross-correlation
of the received signal, called echo profile. It is used in Fin-
gerIO [21], which transmits an OFDM symbol every inter-
val and locates the moving finger based on the change of
the echo profiles of the two consecutive frames. Specifi-
cally, every interval it compares the difference between the
echo profiles of the two consecutive frames and filters out
the points whose differences are smaller than a pre-defined
threshold. Among the remaining unfiltered points, it selects
the point closest to the beginning of the interval since the di-
rect path is the shortest path. We carefully followed the de-
scription of [21] in our implementation, but achieved much
lower accuracy than [21] perhaps due to additional optimiza-
tions used but omitted in [21]. We identified a few ways to
improve [21]. First, we use larger bandwidth and longer FFT
size for OFDM symbol, both of which help to improve the
tracking accuracy. We select FFT size of 256 and 6 KHz
bandwidth (16 – 22 KHz) for transmission while the other
approaches including ours still use 4 KHz bandwidth. Sec-
ond, we find the difference between the two consecutive pro-
files is small as the finger is moving, which makes it chal-
lenging to select an appropriate threshold for filtering. In-
stead, we select the point that has the maximum cross corre-
lation difference and our results show this helps to improve
accuracy and we can now roughly track the position of the
moving finger, but sometimes detect a random location due
to noise. Therefore, we further filter out the positions that
are too far from the previous position. Our evaluation picks
the maximum peak that is within +− 10 cm away from the
previous position. 10 cm is a loose bound to tolerate the
error in estimating the previous position. After getting the
distance estimation, we use the same algorithm introduced
in Section 2.6 to locate the finger in a 2D plane.

3.3 Experimental Result

3.3.1 Phase based Tracking

Tracking accuracy in 1D: We first evaluate the accuracy of
estimating distance change. In this experiment, the user ini-
tially places the finger 20 cm away from the mobile phone,
and moves 10 cm towards it. We repeat the experiment 200
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Figure 7: Impact of distance on tracking error.
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Figure 8: CDF of the distance tracking error with inter-
rupting user.

times for each scheme and collect the CDF of the distance er-
ror. As shown in Figure 7, the median errors of Strata, LLAP,
and cross-correlation based tracking (i.e., CC based) are 0.3
cm, 0.7 cm, and 1.5 cm, respectively. Their 90th percentile
errors are 0.8 cm, 1.8 cm, and 3.2 cm, respectively. The per-
formance of LLAP is similar to the result presented in [29]
when the finger is a moving object and the initial distance
is 20 cm. Note that in [29], the authors mostly used a hand
rather than a finger to evaluate the tracking performance of
LLAP. Figure 7 indicates that Strata can accurately track the
movement by observing the phase rotation from CIR. Its me-
dian tracking error is less than half of LLAP. Since Strata
separately tracks the phase in the CIR vector, it can effec-
tively filter out the measurement noise from the user’s body
movement. In comparison, LLAP cannot since all signals
are mixed up. The accuracy of the cross-correlation based
tracking (even after optimization) is lower than both phase-
based tracking schemes.

Tracking accuracy in 1D with other moving objects: One
advantage of Strata is that it can distinguish movements on
the paths with different delays. This allows us to easily
filter out the interference incurred by the movement of the
surrounding objects in the phase tracking. By limiting the
channel taps to the first 10, we can ignore the phase change
caused by the moving object with the distance larger than 50
cm.

To validate its effectiveness, we perform the distance track-
ing experiment with a person moving in the background while
another user is moving his finger. The background user is ap-
proximately 60 cm away from the mobile phone. Figure 8
plots CDF of the distance tracking error. In Strata, the track-
ing accuracy is almost not affected by the background user:
the median error increases by only 1 mm over no background
moving user.

For the cross-correlation based tracking, we set it to focus
on the phase change within the range between 0 to 40 cm.
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Figure 9: CDF of the distance tracking error.
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Figure 10: Impact of distance on tracking error.

Even if there is change in echo-profile in the distance of the
moving user, we ignore it. As a result, it can effectively
avoid the interference and achieves similar median tracking
error as before: 1.6 cm.

In comparison, LLAP incurs considerable degradation due
to the moving user. The median error increases from 0.8 cm
to 1.2 cm. Since it does not have a mechanism to distinguish
the phase change caused by multiple objects, the background
movement significantly degrades its tracking accuracy.

Varying the number of samples: Figure 9 is the average
1D tracking error with 95% confidence interval when vari-
ous number of samples are used for averaging downsampled
signals as explained in Section 2.3. The result shows that
averaging 4 samples improves the accuracy from 0.39 cm to
0.35 cm compared to simple downsampling. Moreover, it re-
duces the variance. The 90th percentile error decreases from
1.1 cm to 0.8 cm. Using more than 4 samples does not lead
to significant additional improvement. So we use 4 samples
to reduce the computation cost.

Impact of distances: We further vary the distance of the
moving target. Specifically, we set the initial distance of the
finger from the microphone to 20 cm, 30 cm, and 40 cm,
move it 10 cm towards the mobile phone, and measure the
distance error. Figure 10 shows the average error with 95%
confidence interval. As the distance changes from 20 cm to
30 cm to 40 cm, the mean tracking error is 0.35 cm, 0.55
cm, and 0.9 cm, respectively. In all cases, the average error
is within 1 cm. We can support a larger range by increasing
the volume.

3.3.2 Estimating Absolute Distance
Strata can not only track the distance change from the

phase, but also estimate the absolute distance using the chan-
nel difference as explained in Section 2.5. To evaluate the
accuracy of the absolute distance estimation, we collected
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Figure 11: CDF of the absolute distance error.
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Figure 12: CDF of the trajectory error.

the audio and ground-truth data while users are tracing the
shapes on the tablet where initial position of the finger is 20
cm away from the phone. The distance error is measured by
calculating the difference between the estimated distance of
the finger and microphones versus the ground-truth distance.
Figure 11 shows the CDF of the distance error with 200 col-
lected traces. The median and the 90th percentile errors are
1.0 cm and 2.1 cm, respectively. Note that the fine-grained
channel estimation significantly improves the accuracy. In
terms of the median error, the error reduction from the coarse
channel estimation is 48%. We also implement the other
schemes that exploits CIR to detect the distance of the target
(i.e., WiDeo [12] and Chronos [35]) and evaluate their ab-
solute distance estimation accuracy, but they perform poorly
for acoustic signals: their median tracking error is larger than
10 cm, so we do not include the result in Figure 11.

3.3.3 Combining Relative and Absolute Distance Es-
timation

Finally, we evaluate the tracking error in 2D plane. Given
the finger’s distance from the left and the right microphones,
Strata and the baseline schemes track the finger position in
a 2D plane as explained in Section 2.6. As shown in the
previous evaluation results, the distance tracking with phase
change is more reliable than the absolute distance estimation
with channel difference. Therefore, we set α of Strata to 0.1
to give a higher weight to the estimate based on phase based
tracking. For LLAP, we provide the ground-truth initial po-
sition and let it track the finger starting from the ground-
truth initial position. We collect the finger trajectory tracked
by the three schemes as well as the ground-truth trajectory
while the users are following the shapes on the tablet screen.
The initial distance is 20 cm. The trajectory error is calcu-
lated by averaging the difference in the distance between the
estimated and ground-truth positions from all samples. Fig-
ure 12 shows the CDF of the trajectory errors of the three
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Figure 13: 2D trajectory error with various weighting
factors.
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Figure 14: Median drawing error samples drawn by fin-
ger tracking.

schemes after repeating the experiment 200 times for each
scheme. The median errors of Strata, LLAP, and cross-correlation
based tracking are 1.08 cm, 2.18 cm, and 3.47 cm, respec-
tively. The 90th percentile error of them are 2.40 cm, 3.50
cm, and 4.18 cm, respectively.

Figure 13 shows the average trajectory error with various
α values. The result shows that when we set α to small val-
ues such as 0.1, it improves the accuracy. However, if α is
higher than 0.5, it increases the error because the absolute
distance error is less accurate than the phase based tracking.
Note that even when α = 0, the absolute distance estimate
is useful for getting the initial position.

User study: We evaluate how accurately users can draw the
shapes with real-time feedback. We implement a JAVA pro-
gram that receives the tracking result from the mobile phone
and visualizes a pointer on a PC screen controlled by the fin-
ger movement in real-time. Then we asked the user to move
the pointer to trace the shapes (e.g., triangle, diamond, and
circle) on the screen. The average surface area of them are
31.1 cm. The quality of the drawings is evaluated using the
drawing error, which is the same metric as the tracking er-
ror in [29] that measures the distance between original shape
and the user drawing in each sampling point and averaging
them. Figure 15 shows the CDF of the drawing errors us-
ing 200 trajectories collected from 5 users. The median and
the 90th percentile drawing errors are 0.57 cm and 1.14 cm,
respectively. When the users draw with real-time feedback,
they can compensate portion of the tracking error by mov-
ing his finger towards the desired position. Figure 14 shows
sample drawings of the three shapes under median drawing
errors. As we can see, the traced trajectories are close to the
original shapes.

Figure 16 shows the mean drawing errors of 5 users. The
user index 2 corresponds to a female user while all of the
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Figure 16: Mean drawing errors of 5 users.

other users are male. The result shows that users achieve
similar accuracy.
Impact of audible noise: Since Strata uses inaudible fre-
quency range between 18 KHz and 22 KHz, it is robust
against audible noise whose frequency band is much lower
than 18 KHz. During our experiment, we play music using
a laptop’s external speakers at their normal volume near the
mobile phone, and observed similar tracking accuracy. Simi-
lar findings were reported in several different acoustic signal
based tracking schemes (e.g., [44, 29, 32, 18]).
Tracking time: Every 12.5ms, Strata performs low-pass fil-
tering, passband to baseband conversion, channel estima-
tion, and eventually tracks the finger movement. In our Sam-
sung Galaxy S4 testbed, the average of the total processing
time is 2.5 ms. According to [29], the processing time of
LLAP at each interval is 4.3 ms when the same device is
used. For the down-conversion, it already takes 3.5 ms. We
expect that since LLAP uses multiple sine waves in differ-
ent bands, during the down-conversion process, it needs to
filter the signal for every band they use to receive the sine
waves (9 in our implementation). On the other hand, Strata
performs filtering only once for the whole band. As a result,
Strata spends less than 1 ms for the down-conversion.

4. RELATED WORK
We classify existing work into (i) device-free tracking and

(ii) device-based tracking.

4.1 Device-Free Tracking and Gesture Recog-
nition

Acoustic-based tracking: Both LLAP [39] and FingerIO [21]
track the finger movement using the reflected audio signal
from a mobile phone. LLAP develops a phase based tracking
while FingerIO uses OFDM symbol based movement detec-
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tion. Our evaluation in Section 3.2 shows Strata out-performs
both schemes because we extract the path associated with the
finger movement and track its phase change instead of using
the mixed signals [7] develops a system, called UltraHaptics,
to provide haptic feedback based on acoustic radiation force
from a phased array of ultrasonic transducers.
RF-based tracking: Radar uses large antenna arrays to achieve
a narrow beam for tracking. It requires high-power and is
heavy. WiTrack [3] applies Frequency Modulated Contin-
uous Wave (FMCW) to WiFi to track a user’s location with
10-13 cm error in x and y coordinates and 21 cm in z-dimension.
In addition, since off-the-shelf radios do not perform FMCW,
it implements on USRP. WiDraw [31] estimates angle of ar-
rival (AoA) using CSI, and achieves a median tracking error
of 5 cm using 25 WiFi access points (APs). The require-
ment of such a large number of APs significantly limits the
applicability of WiDraw. In comparison, we only require 2
speakers and microphones on one machine to achieve higher
accuracy. WiDeo [12] traces human motion based on re-
flected WiFi signals. It implements on WARP using 4 an-
tennas and phase synchronized RX chains. Its median error
is 7 cm. [46] uses 60 GHz radios and achieves cm-level
accuracy for static objects with line-of-sight. [40] achieves
higher tracking accuracy by using 60 GHz steerable anten-
nas with narrow beamwidth (3.4o) and fine-grained azimuth
rotation (1o). The major advantage of our system is high
accuracy and ease of deployment since it requires no extra
hardware and only software-based processing.
Vision-based: Many works use computer vision for gesture
recognition and tracking. LeapMotion [16] uses sophisti-
cated vision techniques to recognize a wide range of ges-
tures. Kinect [1] uses depth sensors and Wii [2] uses infrared
cameras to track movement. Vision approaches generally re-
quire good lighting conditions, visually distinct patterns, and
high computation cost, which limit its applicability.
Device-free gesture recognition: WiSee [24] is a pioneer-
ing work that uses WiFi signals to recognize 9 gestures in
several environments. AllSee [13] uses RFID tags to recog-
nize gestures based on TV signals. [4] uses CSI from WiFi
to infer which key a user types. [10, 8] use the Doppler shift
of the audio signal to detect in-air gestures. ApneaApp [20]
uses FMCW to track heartbeat by looking at periodic pat-
terns. Gesture recognition performs pattern matching and
requires significant training data. In comparison, continuous
tracking is more challenging due to the lack of training data
or patterns to match against.

4.2 Device-based Tracking
IMU-based: IMU sensors have been commonly used for
motion tracking. Several works have reported that accelerom-
eter has large error and its error increases rapidly over time
due to double integration over time [38, 44]. Gyroscope has
pretty good accuracy, but is not easy to use, since users have
difficulty in how much to rotate in order to control certain
displacement movement [44].

Audio-based: Audio is attractive for localization and track-
ing due to its slow propagation speed, which helps improve
the accuracy. One line of research focuses on using audio
for estimating distance. For example, [23] develops a novel
approach that allows the sender and receiver with unknown
clock offsets to measure the propagation delay. [45] ad-
dresses several practical challenges in using audio signals for
tracking (e.g., quickly detecting the signal, reducing compu-
tation overhead, and accounting for measurement error dur-
ing movement).

Another line of research focuses on applying audio for
localization. Cricket [30] uses both audio and RF to achieve
median error of 12 cm with 6 beacon nodes. Swadloon [11]
exploits the Doppler shift of audio signal for fine-grained
indoor localization. Its error is around 50 cm. [15] uses
chirp-based ranging to achieve localization error within 1 m.
[44] uses the Doppler shift to estimate the velocity, based on
which it computes the distance to localize the mobile. Its
median error is 1.4cm.

The third line of audio based approaches target gesture
recognition. [5, 32] use the Doppler shift of the audio sig-
nal between the two mobile phones for gesture recognition.
DopLink [5] detects if a device is being pointed by another
device. Spartacus [32] uses the Doppler shift to determine
the device’s moving direction and pairs it with another de-
vice moving in the same direction.

RF-based: WiFi has been widely used for localization and
tracking (e.g., [6, 26, 28, 35]). Many WiFi based localization
uses received signal strength and their accuracy is limited
due to obstacles and multipath. More recently, several works
use channel state information (CSI), which reports the RSS
on each OFDM subcarrier group, to provide accurate loca-
tion distinction. ArrayTrack [42] and RF-IDraw [38] further
use phase of the received signal to enhance the accuracy. For
example, ArrayTrack achieves a median error of 23 cm us-
ing 16 antennas. RF-IDraw [38] achieves 3.7 cm tracking
error.

5. CONCLUSION
This paper develops a novel device-free acoustic tracking

system that achieves 1.0 cm median tracking error. Through
this process, we gain several important insights: (i) phase-
based tracking is effective for acoustic signals due to its small
wavelength, but we need to use the channel estimate from an
appropriate tap (instead of the overall channel) to achieve
high accuracy, (ii) it is hard to estimate the absolute distance
by directly decomposing the channel since acoustic channel
is not sparse, and our formulation based on the change re-
moves static paths, which significantly reduces the number
of unknowns and improves accuracy, and (iii) acoustic chan-
nel has much higher sampling rate than Nyquist rate and our
fine-grained channel estimation is effective in improving the
channel estimation accuracy. Moving forward, we plan to
develop applications on top of device-free tracking.
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